Phase Behaviour of Binary and Multicomponent Mixtures for CO₂-EOR: A Comparison Between Predictive Modelling and Experimental Data

Geraldine A. Torín-Ollarves ^{C, S}, E. Chidi Efika and J. P. Martin Trusler Department of Chemical Engineering, Qatar Carbonates and Carbon Storage Research Centre (QCCSRC), London, United Kingdom g.torin-ollarves@imperial.ac.uk

It is now clear that, to avoid dangerous climate change, a dramatic reduction in carbon dioxide emissions is required in the coming decades. Carbon capture and storage (CCS) is a promising large-scale clean-energy technology. Depleted oil and gas fields have been identified as promising sinks for CO₂. Furthermore, to partially offset CCS costs, the use of CO₂ in enhanced oil recovery (EOR) may be beneficial. For both CCS in depleted oilfields and CO₂-EOR, a full understanding of the phase behaviour of CO₂-hydrocarbon mixtures at reservoir conditions is required.

In order to simulate such processes, and to allow for the diverse chemical composition of the components present, several group-contribution-based thermodynamic models have been developed, notably SAFT- γ Mie. To date, the group parameter tables for SAFT- γ Mie are incomplete and/or lack validation in respect of some terms. To help address this, vapour-liquid equilibrium data (VLE) were measured for mixtures of (methylcyclohexane (MCH) + CO₂) and (MCH + N₂) at temperatures from (323 to 423) K and at pressures up to the critical. These data were used to optimise the interaction parameters involving MCH with N₂ or CO₂. Additionally, VLE data for (CO₂ + MCH + N₂) were measured at the same temperature and pressure conditions to validate the model. The measurements were carried out with a new analytical VLE apparatus equipped with on-line sampling and a gas chromatograph for compositional analysis. It was validated by means of saturated vapour pressure measurements on methanol and VLE measurements on (CO₂ + heptane). The results of these validation measurements were in good agreement with the literature. The experimental results for the (CO₂ + MCH + N₂) system have been compared with the predictions of both the SAFT- γ Mie approach and the Predictive-Peng-Robinson equation of state, with group contribution formulae for the binary interaction parameters.

Acknowledgement

We gratefully acknowledge the funding of QCCSRC provided jointly by Qatar Petroleum, Shell, and the Qatar Science & Technology Park.