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In absence of experimental data, the ability to predict various thermophysical properties related to chemicals of 

interest becomes crucial in many engineering applications. Some of them are essential in order to perform phase-

equilibria calculations, energy balances and the evaluation of process alternatives [1]. One way to perform these 

predictions is by relating the molecular structure in a machine-readable format (molecular descriptors) to the 

property of interest. Such models are referred to as “Quantitative Structure-Property Relationships” or QSPR models 

[2]. Recent developments in the field of Deep Learning (DL) and especially Graph Neural Networks (GNN) have 

eliminated the need choosing a suitable molecular descriptor, as they are able to learn an optimal representation 

from a molecular graph and map them to the target property through backpropagation [3], [4]. Traditionally, models 

are built to predict one specific property or target. However, DL models are able to predict several properties 

simultaneously also known as multitask learning [5]. Here the models might improve their performance through 

inductive transfer learning i.e. while learning to predict property “A”, the model might need less effort to learn how 

to predict property “B” [5] . This is especially relevant in cases where good quality experimental data are scarce [6]. 

In this work, we will demonstrate the model performance based on multi-task deep learning as compared to a series 

of disjoint models in predicting closely related properties e.g. flammability related properties covering the Lower 

Flammability Limit (LFL), Upper Flammability Limit (UFL) volumes and the Flash Point (FPT) and Auto-Ignition (AIT) 

temperatures. 
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