Influence of Nanofluid Instability on Thermodynamic Properties Near the Critical Point

Joseph Magee C, S

Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado,

U.S.A.

joe.magee@nist.gov

Nikolai Polikhronidi and Rabiyat Batyrova Institute of Physics, Russian Academy of Sciences, Makhachkala, Russia

Ilmutdin Abdulagatov Geothermal Research Institute, Russian Academy of Sciences, Makhachkala, Russia

Thermodynamic properties (isochoric heat capacity, critical and phase transition temperatures, pressure and thermal-pressure coefficient) of a nanofluid (2-propanol + TiO2) were experimentally studied [1] near the critical point of the pure base fluid (2-propanol) [2] Measurements were made using a high-temperature, high-pressure, nearly constant-volume adiabatic piezo-calorimeter that was designed for simultaneous measurements of caloric (C_VVT) and volumetric (pVT) properties of fluids along the near-critical isochores as a function of temperature in the two-phase and single-phase regions. The standard uncertainty of the density, temperature, pressure, thermal-pressure coefficient, and heat capacity measurements is estimated to be 0.1 %, 0.02 K, 0.5 %, 1.0 %, and 1.5 %, respectively. The measurements were made along a selected near-critical isochore of 282.68 kg·m⁻³ for a concentration of 0.132 mass fraction of TiO2 in the temperature range from (314 to 511) K. The measured C_V and critical temperature data were interpreted in terms of finite-size scaling theory of critical phenomena for fluids confined in the finite-size media. The influence of finite size on the thermodynamic properties of the near- and supercritical fluid was studied, along with thermal instability of the nanofluid (2-propanol + TiO2) at high temperatures (near 500 K).

References

[1] Polikhronidi, N. G., Batyrova, R. G., Magee, J. W. and Abdulagatov I. M., "Influence of Nanofluid Instability on Thermodynamic Properties Near the Critical Point," J. Chem. Thermodyn. 133, 46-59 (2019) [DOI: 10.1016/j.jct.2018.12.009].

[2] Polikhronidi, N. G., Batyrova, R. G., Magee, J. W. and Abdulagatov I. M., "One- and Two-Phase Isochoric Heat Capacities and Saturated Densities of 2-Propanol in the Critical and Supercritical Regions," J. Chem. Thermodyn. 135: 155-174 (2019) [DOI: 10.1016/j.jct.2019.03.023].