No Structural Transitions in Solid Fe

Geun Woo Lee^{1, S, C}, Sangho Jeon², Yong Chan Cho¹ and Yun-Hee Lee¹

¹Korea Research Institute of Standards and Science, Daejeon, Korea ²Deutsches Elektronen-Synchrotron, Hamburg, Germany gwlee@kriss.re.kr

Solid iron (Fe) experiences structural transitions and a magnetic transition with temperature; ferromagnetic bcc-Fe (α -Fe) transforms to paramagnetic bcc-Fe at Curie temperature (T_c) of 1043 K, does to fcc-Fe (γ -Fe) at 1185 K, and to bcc-Fe (δ -Fe) at 1667 K again. This behavior of Fe is exotic, since the γ (fcc)-Fe has higher density than α (bcc)-Fe, which cannot be observed with other polymorphic elements. Thus, the origin of fcc-Fe between these bcc phases has attracted significant interest from both fundamental science and practical application viewpoints.

We here report for the first time that $\delta(bcc)$ -Fe phase does not transform into $\gamma(fcc)$ -Fe phase on cooling by using electrostatic levitation, indicating the existence of paramagnetic bcc Fe in the temperature range of $\gamma(fcc)$ -Fe. Our results support recent simulation studies which shows the comparable Gibbs free energy of bcc and fcc phases in the equilibrium temperature region of γ -Fe. In addition, the gradually increasing specific heat as temperature decreases reflects that local magnetic ordering develops within the temperature range of $\gamma(fcc)$ -Fe, which is consistent with recent simulation studies.