
New Approach to Modeling Mixtures Based on Helmholtz Energy Equations for the Components

Jan Hrubý1, S, C, Aleš Blahut1 and Václav Vinš1

1Thermodynamics, Institute of Thermomechanics of the Czech Academy of Sciences, Prague 8, Czechia
hruby@it.cas.cz

Multiparameter equations of state formulated in terms of the Helmholtz energy enable computation of all
thermodynamic properties essentially within the uncertainty of the underlying experimental data. They are
implemented in thermophysical property databases such as REFPROP, TREND, and CoolProp. The presently
used model for computing residual properties of mixtures [1] is efficient in modeling complex mixtures.
However, virial coefficients computed from this model do not obey the rigorous mixing rules [2]. We further
analyzed this problem and provided a new general model avoiding this deficiency [3].

The new model [3] is based on Helmholtz energy equations for the components and for the so-called cross-
components, which represent interactions of unlike pairs of molecules. The equations for the components and
cross-components are combined in a quadratic form of concentrations or, equivalently, mole fractions. This is to
some extent analogous to the current method [1]. The main difference is in avoiding the corresponding-states
based scaling of temperature and density variables. Instead, we introduce general density and temperature scaling
functions which can be expanded, for low densities, into a Taylor series in terms of molar concentrations of
individual components. We showed that when the method is applied for a cubic equation of state with a simple
choice of the scaling functions, the same result is obtained as when using the classical van der Waals mixing
rules.

In this work, we use the same simple scaling functions in combination with multiparameter Helmholtz energy
equations for the components. The residual Helmholtz energy for the cross-component is modeled as an
arithmetic average of the functions for the two corresponding components. Scaling volume and temperature for
the cross-component are chosen, respectively, as an arithmetic and geometric average of the pure fluid
parameters. With this purely predictive set up (no adjustment to mixture data), density in gas, liquid, and
supercritical regions can be reproduced for mixtures of simple components (such as alkanes, argon, nitrogen)
with reasonable accuracy. Computations of vapor-liquid phase equilibria (VLE) revealed an important
requirement on the equations of state of the components: at least the lower-boiling components must be
represented with equations yielding a proper van der Waals loop with one minimum and one maximum.
Unfortunately, the present Helmholtz energy formulations generally show more complex (rather arbitrary)
behavior in the metastable/unstable region. We developed an ad-hoc cubic equation for butane and we used it to
model VLE for butane and methane. The computations compare favorably with experimental data. The accuracy
of predictive computations largely depends on the quality of the equations of state including the
metastable/unstable region.

For more complex mixtures, dedicated Helmholtz energy equations for the cross-components and more
sophisticated scaling relations need to be developed.
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