Density and Isobaric Heat Capacity of CO2-Loaded Aqueous Amines for Carbon Capture

Yisel Pérez-Milian¹, Juan Diego Arroyave¹, Alejandro Moreau^{1, S}, Fredy Vélez¹ and David Vega-Maza^{1, C}

¹Energy Engineering and Fluid Mechanics, University of Valladolid, Valladolid, Castilla y Leon, Spain david.vega@uva.es

Human activities have led to a substantial increase in carbon dioxide (CO₂) emissions. This has caused global surface temperatures to rise. Amine-based CO₂ capture has become a promising technology to tackle this problem. The thermophysical characterisation of fluids is crucial for understanding carbon capture performance. Properties such as density (ρ) and isobaric heat capacity (c_p) play an essential role in the design of energy efficient systems. In addition, these properties are valuable for predictive modeling. Nevertheless, literature lacks practically all essential CO₂-loaded thermophysical properties over a wide range of concentrations, temperatures, and pressures.

To fill this gap, we measured ρ and c_p of two systems consisting of CO₂-loaded aqueous solutions of amines, monoethanolamine (MEA) and *N*-methyldiethanolamine (MDEA). A predetermined amount of CO₂ was mixed with an aqueous amine solution in an equilibrium cell. This method allowed us to establish a fixed CO₂-loading state in terms of mol CO₂/mol amine. Experimental measurements were carried out at temperatures between (293.15 and 393.15) K, pressures up to 100 MPa in ρ and 20 MPa in c_p , and CO₂-loading up to 0.6 mol CO₂/mol MEA and 0.8 mol CO₂/mol MDEA. Density was measured using a vibrating tube densimeter, with an expanded (k = 2.0) relative uncertainty of 0.1 %. A flow calorimeter with an expanded relative uncertainty better than 1 % was used to measure c_p .

It was found that an increase in temperature resulted in a slight increase in c_p . Pressure had no effect on c_p . We observed that an increase in CO₂-loading led to a 8 % ρ increase and a 11 % c_p decrease with $\alpha = 0.6$ in 30 % MEA_{aq}. Comparison with the scarce experimental data available in literature is in good agreement within uncertainty. The experimental measurements were fitted with an empirical correlation, achieving standard deviations better than the uncertainty.

Acknowledgments

This work was funded by EURAMET EPM project number: 21GRD06 MetCCUS. Y.P.M. and J.D.A. have been funded by the call for predoctoral contracts UVa 2021, co-funded by Banco Santander. D.V.M. thanks his fellowship "Beatriz Galindo Senior", BEAGAL18/00259.