Solubility of Carbon Dioxide in Aqueous Solution of Monoethanolamine and n-Methyldiethanolamine: Experimental Measurements and Modeling

Juan Diego Arroyave¹, Yisel Pérez-Milian¹, David Vega-Maza¹, Alejandro Moreau^{1, S} and M. Carmen Martín^{1, C}

¹University of Valladolid, Valladolid, Spain mcarmen.martin@uva.es

Chemical absorption with aqueous amines is a widely adopted technology for CO₂ capture in industrial processes, with monoethanolamine (MEA) as the benchmark absorbent. However, MEA has drawbacks, including high energy requirements for regeneration and significant corrosiveness. In contrast, n-methyldiethanolamine (MDEA), a tertiary amine, shows significant potential for CO₂ capture due to its substantial loading capacity [1].

This study focuses on determining CO_2 solubility in aqueous solutions of MEA and MDEA using a static-isochoric-synthetic method. The apparatus, which is designed for pressures up to 10 MPa, allows for the characterization of a broad range of CO_2 loadings for both amines: (0.2-1) mol CO_2 /mol MEA and (0.1-1.6) mol CO_2 /mol MDEA. The technique is validated by comparing the results obtained with those available in the literature for the system 30 wt.% MEA at T = (313.15 - 393.15) K and pressures up to 10 MPa. For MDEA, measurements are carried out at T = (313.15 - 353.15) K and pressures up to 9 MPa. A comprehensive uncertainty analysis is also performed taking into account the contributions of volume cell calibration, liquid mixture density, pressure, temperature, CO_2 charging method, water mass, and pure amine mass. This equipment is versatile over a wide range of CO_2 loadings, pressures and temperatures, and there is no need for phase analysis.

Finally, the experimental data are correlated with a modified mathematical model based on the Kent-Eisenberg and Deshmukh-Mather (D-M) models. The Krichevsky-Kasarnovsky equation is coupled with D-M to predict experimental data at CO₂ loadings exceeding 1 mol CO₂/mol amine at high pressures. These models predict amine speciation, including unreacted amine, protonated amine, carbamates, carbonates, and CO₂ solubilized without chemical reaction.

Acknowledgments

This work is funded by EURAMET, EMPIR project number: 21GRD06 and ERDF and Junta de Castilla y León project number CLU-2019-04.

References

1. G. Kontos, K. Leontiadis and I. Tsivintzelis, Fluid Phase Equilib, 2023, 570, 113800.