Amine Functionalized Supported Ionic Liquid Membranes (SILMs) for CO2/N2 Separation

Antoine Chamoun-Farah^{1, S}, Austin N. Keller¹, Mariam Y. Balogun¹, Louise M. Cañada¹, Joan F. Brennecke^{1, C} and Benny D. Freeman¹

¹McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, U.S.A. jfb@che.utexas.edu

Supported ionic liquid membranes (SILMs), containing aprotic heterocyclic anion ionic liquids (AHA ILs) in an inorganic inert support, exhibit excellent CO $_2$ /N $_2$ permselectivity, reaching as high as 640 at 35 °C and 0.03 bar CO $_2$, conditions similar to post-combustion carbon capture (PCCC) from a natural gas power plant. A Fickian model fit to the experimental data estimates CO $_2$ permeability at direct air capture (DAC) pressure conditions of 10,400 barrer and a CO $_2$ -N $_2$ permselectivity of 4,000 for the best performing IL, triethyl(octyl)phosphonium 4-bromopyrazolide ([P $_{2228}$][4-BrPyra]). The effect of cation size on permeance is studied for the [2-CNPyr]-anion, and it was determined that the smaller [P $_{2228}$]+ cation outperformed the trihexyl(tetradecyl)phosphonium ([P $_{66614}$]+) cation because its ILs had a higher carrier concentration and reacted with CO $_2$ more readily. The most important criterion for high selectivity is a large equilibrium constant for binding between the IL and CO $_2$, which results in high CO $_2$ solubility. ILs with smaller molar volumes and without any fluoroalkyl chains enhance N $_2$ rejection. Low viscosity and high IL molar density also enhance CO $_2$ /N $_2$ permselectivity and CO $_2$ permeance. In addition, preliminary humidified mixed-gas results, down to 400 ppm CO $_2$ (balanced N $_2$) will be presented for phosphonium-based ionic liquids with AHAs.