Investigation of the Structure, Stability, and Relative Solubility of Psilocybin in Water and Pure Organic Solvents Lucas Paul¹, Cyril Namba-Nzanguim², Aidani Telesphory³, Jehoshaphat Oppong Mensah⁴, Denis Mteremko⁵, Rene Costa⁶, Saidi Mohamedi Katundu⁷, Lucas Kwiyukwa⁸, Naserian Kambaine⁷, Julius Juvenary⁸, Sixberth Mlowe¹, Geradius Deogratias⁸, Daniel Shadrack⁹ and Andrew Paluch^{10, S, C} ¹Department of Chemistry, Dar es Salaam University College of Education, Dar es Salaam, Tanzania, U.S.A. ²Department of Chemistry, University of Buea, Buea, Cameroon, U.S.A. ³Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, Dar es Salaam, Tanzania, U.S.A. ⁴Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, U.S.A. ⁵Department of Biological and Food Sciences, The Open University of Tanzania, Dar es Salaam, Tanzania, U.S.A. ⁶Department of Physical and Environmental Sciences, The Open University of Tanzania, Dar es Salaam, Tanzania, U.S.A. ⁷Department of Chemistry, The University of Dodoma, Dodoma, Tanzania, U.S.A. ⁸Department of Chemistry, University of Dar es Salaam, Dar es Salaam, Tanzania, U.S.A. ⁹Department of Chemistry, St John's University of Tanzania, Dodoma, Tanzania, U.S.A. ¹⁰Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, OH, U.S.A. paluchas@miamioh.edu Psilocybin is an indole-based secondary metabolite found naturally in mushrooms which possesses several pharmacological effects. Recently, a large number of experimental investigations have been conducted to characterize the pharmacology of psilocybin and its derivatives, and to develop synthetic pathways to manufacture psilocybin. Nonetheless, current research on the physical characterization of psilocybin is limited in part due to legal restrictions. In the present study, we investigate two unique tautomers of psilocybin as depicted in the 2D chemical structure of psilocybin presented in the recent literature. Using a combination of electronic structure calculations and molecular simulation, we are able to identify and characterize the thermodynamically preferred tautomer. We additionally computed the solvation free energy and investigated the solvation structure of psilocybin in water and 35 organic solvents. We find that hydrogen bonding between psilocybin and the solvent dominate the solvation process. Considering the thermodynamically preferred tautomer, we find that the solubility in water is greater than all of the studied organic solvents.