Optical and Thermal Characterizations of Metal-Insulating Phase Transition Titanium(III) Oxide Fatima Anwar¹, Jeffry Kelber¹ and Richard Zhang^{2, S, C} ¹Department of Chemistry, University of North Texas, Denton, TX, U.S.A. ²University of North Texas, Denton, TX, U.S.A. zihao.zhang@unt.edu Titanium(III) Oxide (Ti₂O₃) is a phase transition oxide with a metal-to-insulating temperature (MIT) near 200°C. Optical and thermal measurements of Ti₂O₃ can benefit the design and implementation of tunable radiative emission coatings, where the compositional x in TiO_{2-x} is sought to change the MIT. We have grown TiO_{2-x} film by well-controlled molecular beam epitaxy (MBE). The MBE process provided precision control of x, while providing in situ Auger stoichiometry measurements. The objective of our thin film synthesis and spectrometry is to provide a broadband infrared spectrum of temperature-dependent dielectric functions of Ti₂O₃. A 700 Å TiO_{2-x} film has been grown by MBE at room temperature, with a slow controlled deposition rate being 0.32 Å per minute. The presence of a phase transition is apparent in the color with the respective change in the amount of oxygen in the film, with its blue shade indicating x near 0.25 ($Ti_2O_{3.50}$). This corresponds to the Ti_2O_3 corundum phase. We noticed depositions in 10^{-7} Torr background pressure of O_2 caused the film color to be rusty brown. Annealing in UHV created the oxygen deficiency / vacancy in the film with reappearance of blue shade and Auger estimated stoichiometry of Ti₂O_{3 50} Subsequent depositions necessitate UHV anneal to achieve the stoichiometry closer to Ti₂O₃ for optically thick films >1000 Å. The optical measurements were carried out in UV/vis ellipsometry to obtain VASE models for precise thin film thickness. An FTIR with heater-controlled backside in variable reflectance configuration provided spectra between room temperature and 200°C, normalized to a heated reference. The ongoing task of thermal and spectral characterizations can enable development of plasmonic emitters, with aptly corresponding blackbody emissions in the mid-infrared.