Current Status of Correlations for the Surface Tension of Ordinary Water

Václav Vinš^{1, S, C}, Jan Hrubý¹, Monika Součková¹, Ali Aminian¹, David Celný¹ and Aleš Blahut¹

¹Institute of Thermomechanics of the Czech Academy of Sciences, Prague, Czechia vins@it.cas.cz

The international standard for the surface tension of ordinary water approved by IAPWS [1] is based on the correlation by Vargaftik et al. [2] introduced in 1983. The IAPWS standard has been later adjusted to the International Temperature Scale of 1990 (ITS-90) and, based on new experiments carried out under the metastable supercooled state, has been proved to provide reliable predictions even when extrapolated from 0 °C down to -25 °C. Even though the IAPWS standard provides reliable predictions, it seems to suffer from three weaknesses: A) the uncertainty estimates appear rather high, e.g., 0.36 mN/m at 25 °C; B) in the hightemperature region reaching the critical point, the correlation is based on just two data sets published back in 1969 and 1973 by a single research group of Vargaftik [3]; C) recent experiments carried out at temperatures down to -31 °C show slight deviation from the extrapolated IAPWS standard [4]. In 2016, the group of Pátek reported new experimental data from -0.6 to 70 °C and developed a new correlation for the surface tension of ordinary water [5] with an estimated error of 0.1 mN/m. The mathematical formula is identical with the IAPWS standard. In 2015, Kalová and Mareš reviewed literature data for surface tension at 20 and 25 °C [6] and recently developed another correlation for the surface tension of ordinary water with an additional term τ ^{1.76} [7]. The uncertainty is estimated between 0.1 and 0.2 mN/m depending on the temperature region. In this talk, we compare the available correlations and try to assess recent developments that could lead to a possible reduction in the uncertainty estimates of the current IAPWS standard for the surface tension of ordinary water.

Acknowledgments

This work was supported by the Czech Science Foundation Grant No. GA22-03380S and the institutional support RVO:61388998.

References:

- 1. IAPWS R1-76 release on surface tension of ordinary water substance. 2014; http://www.iapws.org/
- 2. N. B. Vargaftik, B. N. Volkov, L. D. Voljak: International tables of the surface tension of water. J. Phys. Chem. Ref. Data 12 (1983) 817-820.
- 3. N.B. Vargaftik, L.D. Volyak, B.N. Volkov: Investigation of the surface tension of H2O and D2O at the temperatures near the critical point, Teploenergetika 8 (1973) 80-82.
- 4. V. Vinš, J. Hykl, J. Hrubý, A. Blahut, D. Celný, M. Čenský, and O. Prokopová, J. Phys. Chem. Lett. 11 (2020) 4443–4447.
- 5. J. Pátek, J. Klomfar, M. Součková: Generation of recommendable values for the surface tension of water using a nonparametric regression. J. Chem. Eng. Data 61 (2016) 928-935.
- 6. J. Kalová, R. Mareš: Reference Values of Surface Tension of Water, Int. J. Thermophys. 36 (2015) 1396-1404.
- 7. J. Kalová, R. Mareš: Temperature Dependence of the Surface Tension of Water, Including the Supercooled Region, Int. J. Thermophys. 43 (2022) 154.