Flexible Nanocomposite Polymer Materials for Energy Harvesting and Heat Management

Zouhair Hanani¹, Brigita Rozic¹, Daoud Mezzane², Mimoun El Marssi³, Anna Morozovska⁴, Serhii Ivanchenko⁵, Hana Ursic⁶, Matjaz Spreitzer⁷ and Zdravko Kutnjak^{8, S, C}

¹Jožef Stefan Institute, Ljubljana, Slovenia ²Cadi Ayyad University, Marrakech, Morocco ³Univerity of Picardie Jules Verne, Amiens, France ⁴Institute of Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine ⁵Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Kyiv, Ukraine ⁶Electronic ceramics, Jožef Stefan Institute, Ljubljana, Slovenia ⁷Advanced Materials, Jožef Stefan Institute, Ljubljana, Slovenia ⁸Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, Slovenia zdravko.kutnjak@ijs.si

Today's quest for sustainable energy solutions through greener energy harvesting and heat-management technologies has recently developed a significant interest in new flexible and biocompatible nanocomposite ceramics with large electromechanical, triboelectric, and electrocaloric (EC) effects [1]. Therefore, an overview of experimental and theoretical investigations of the large EC, piezoelectric, and triboelectric response in flexible ceramic nanocomposites exploiting enhanced multiferroic properties of ferroelectric nanoparticles within the polymer matrix will be presented in this contribution. Specifically, the enhanced EC response in lead-free BCZT and BaTiO3-based nanoparticles will be reviewed, including flexible polymer composites' large energy harvesting potential [2]. The impact of filler's dielectric permittivity and aspect ratio in high-k polymer and the benefits of combining 1D and 3D nanofillers on enhanced properties of flexible nanocomposites will be discussed [3].

References

- 1. Z. Kutnjak., B. Rožič, R. Pirc., Wiley Encyclopedia of Electrical and Electronics Engineering, 1-19 (2015).
- 2. Z. Hanani et al., Nano Energy 81, 105661 (2021).
- 3. Z. Hanani et al., Nanoscale Adv. 4, 4658 (2022).