Thermodynamic Modeling of CO2 Absorption in Aqueous Potassium Carbonate Solution with the Association eNRTL Model Cheng-Ju Hsieh^{1, S} and Chau-Chyun Chen^{1, C} ¹Chemical Engineering, Texas Tech University, Lubbock, TX, U.S.A. chauchyun.chen@ttu.edu Aqueous potassium carbonate (K_2CO_3) solution is a common and environmentally benign chemical absorbent for CO_2 capture. To reduce energy requirements associated with CO_2 stripping and compression processes, the industry is interested in developing high-temperature and high-concentration K_2CO_3 -based CO_2 absorption processes. Previous thermodynamic modeling efforts for conventional K_2CO_3 -based CO_2 absorption processes focused on correlating and predicting the CO_2 partial pressure vs CO_2 loading [1] and paid little attention to other thermodynamic properties such as water partial pressure and enthalpy of absorption that are critically important for the development of high-temperature and high-concentration K_2CO_3 -based CO_2 absorption processes. This study presents a comprehensive thermodynamic modeling of the K_2CO_3 -H2O-CO2 ternary system and its binary systems with the recently developed association electrolyte nonrandom two-liquid (association eNRTL) model [2]. Taking into account the ion hydration and ion-pairing of carbonate ions in the aqueous solution, the association eNRTL model provides an accurate representation for various thermodynamic properties such as the CO_2 partial pressure, the water partial pressure, the enthalpy of absorption, and the K_2CO_3 solubility for the K_2CO_3 -H2O-CO2 system. The study covers temperature up to 473.15 K and K_2CO_3 concentration up to saturation. ## References - 1. H. Kaur, C.-C. Chen, "Thermodynamic Modeling of CO2 Absorption in Aqueous Potassium Carbonate Solution with Electrolyte NRTL Model," *Fluid Phase Equilibria*, 2020, **505**, 112339. https://doi.org/10.1016/j.fluid.2019.112339 - 2. Y.-J. Lin, C.-J. Hsieh, C.-C. Chen, "Association-based Activity Coefficient Model for Electrolyte Solutions," *AIChE Journal*, 2022, **68**(2), e17422. https://doi.org/10.1002/aic.17422